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A simple method is shown for computing the Airy stress function for two-dimensional 
problems. The method is applied to a simple mechanics example and to large computer- 
generated atomic models whose properties are independent of some coordinate z. The method 
has recently proved useful for analyzing topological defects in computer-generated models of 
amorphous solids. 

I. INTRODUCTION 

For a solid in static equilibrium with cylindrical symmetry or with properties that 
are independent of some coordinate z, the Airy stress function provides the simplest 
characterization of the stress properties. For such solids, there are three independent 
components of the stress tensor (a,,, cry,,, oXY), but all of these can be expressed as 
derivatives of a single scalar potential as was first noted by Airy. The Airy stress 
function is related to the components of the stress tensor by 

u xx =a2v/ay2; 

u yu=a2~/a~2; 0.1) 
u xy = -a+/axay. 

For a system obeying Hooke’s law and the compatibility equations, the Airy stress 
function, J,Y(X, u), in the absence of external body forces obeys a biharmonic equation 

d41y(x, y) = 0. (1.2) 

By knowing the stress function, I&, y) for all x and y, the stress tensor field is 
completely specified. 

If the solid is treated as a continuous medium, the Airy stress function can be 
found exactly in special cases where symmetries in the problem simplify the solution 
of the biharmonic equation (see, for example, [ 11). For more complicated cases, 
where the medium may be inhomogeneous, solving for the Airy stress function can be 
a very difficult task. 
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Of course, real solids are composed of atoms held together by interatomic forces 
which, in most cases, can be treated as central forces, e.g., the Lennard-acmes 
potential. Recently, there have been attempts to use computer-generated atomic 
models with central forces to analyze structural characteristics and defects in real 
solids [2]. When the materials are amorphous or contain defects, they are highly 
inhomogeneous. For cases when the properties to be studied depend only on two 
dimensions, the models can be treated as effectively planar and an Airy stress 
function can be defined. However, experience with continuum models would dkt,tate 
that computing the Airy stress function for an inhomogeneous atomic model is a task 
too horrible to contemplate. 

Surprisingly enough, this is not the case at all. The purpose of this paper is to 
demonstrate how one may compute for an effectively planar model composed of pins 
joined by rods (or atoms joined by central forces) the Airy stress function in a very 
efficient manner. The method applies to simple mechanics problems as well as stress 
properties of large atomic models. In Section II, the reasoning leading to the 
computation scheme will be discussed. In Section III, the notions will be 
demonstrated by solving a simple mechanics problem using the Airy stress function. 
In Section IV, the most efficient way to expand the method to large atomie models 
will be discussed. Several examples, ranging from stresses in finite crystalline solids 
to defects in amorphous solids, will be considered and the Airy stress function will be 
computed to determine various stress properties. 

II. THE AIRY STRESS FUNCTION IN Twa DIMENSIONS 

The Airy stress function was first invented in the course of analyzing stresses in 
continuous media and is discussed in the beginning of standard texts on the subject 
[II- ecause the stress function for continuous media can only be computed for cases 
of great symmetry, it has not received much attention as a tool for analyzing the 
stress properties of solids. F. C. Frank [3] was the first to note that for two- 
dimensional stress problems involving beams, rods, pin-joints, and the like, the Airy 
stress function can be easily computed and interpreted in spite, of the lack of 
symmetry. In this section, his analysis shall be briefly reviewed. 

For a two-dimensional medium, the stress is the force per unit length associated 
with the force necessary to hold together a cut of uni& length through the medium. 
For a cut stretching from a chosen origin to a point x, the force necessary to keep tke 
cut together is Fi(x) and can be shown to be independent of the path of the cut, 
Therefore, Fi defines a force vector field and it is related to the components of the 
stress tensor by 

u xx = 2FJ2y; 

u YY = -2FJ2x; 

u xy = -=,/a~; 

(3 yx = 2FJ2x. 

(II. 1) 
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If one considers the shear forces on a small rectangular element in the medium with 
sides dx and c’y, the total moment of stress (the torque) is 

uyx dx dy - uXY a!x dy. (11.2) 

In the absence of body torques, the sum must be zero or else the element would 
undergo a rotational acceleration. Therefore, one may conclude that 

0y.r - ax, = 0 (11.3) 

or 

13F&?x + c?F,,/ay = 0. (11.4) 

(Alternatively, Eq. (11.3) may have been adopted as a fundamental principle.) The 
last equation can be rewritten in a coordinate independent notation 

V.F=O (11.5) 

expressing the fact that the force vector field is divergenceless in the absence of body 
torques. The equation may be solved by introducing a continuous scalar potential 
which is related to the force vector field by 

F=!!L 
x 

aY 
and F=aul 

Y ax * 

Since for continuous and differentiable functions 

(11.7) 

Eq. (11.4) is automatically satisfied. Therefore, the components of the stress tensor are 
given by 

u XX = a2YlaY2; 

u yy = a2y/13x2; (11.8) 

u xy = u yx= -a2y/ax ay. 

For a given Fi(x, y), the stress function I,V(X, y) is defined up to an arbitrary constant; 
the physical observables are the stress and they determine the stress function only up 
to an arbitrary linear function in x and y. 

If the two-dimensional system being considered consists of pin-joints and rods, 
equivalently, atoms joined by central forces, Eq. (11.8) implies that the stress function 
has a particularly simple form. Where there is empty space between the rods or lines 
of force, the stress is zero and all second derivatives of the stress function are zero. If 
he stress function is represented as a surface above the two-dimensional plane of the 
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problem with height ~(x, y) at point (x, y), in the empty spaces between lines Qf ~CHXX 
the surface is flat with some constant gradient. Since the magnitude of the ~tm~ 
function and its gradient are not physically relevant, their value may be fixed at some 
arbitrary point; it is convenient to choose the value of the stress function and its 
gradient to be zero at some point beyond the outer boundary of the problem being 
considered (for problems or models of finite extent in the plane). The gradient only 
changes value along a line that crosses a line of force between two points. For 
example, if the line of force, Fx lies along the x-axis, there is an associated tension, 
a,. If a and b are points that lie on either side of the line of force on a line parallel to 
the y-axis, then 

@X, is zero in the problems considered in this paper.) Thus, crossing a line of force 
just changes the gradient of the stress function by an amount depending o 
magnitude of the force and the angle between the direction of crossing an 
direction of the line of force. These rules are sufficient to determine the stress function 
uniquely for a two-dimensional problem. 

In principle, it is possible to extend these rules to cases where there are bending 
moments in the problem and uXY is not equal to zero. Frank [3] has given an example 
of how the stress function may be computed for the case of a tensioned cross-bow. At 
the present time, we have been unable to extend the method to cases of covale~tI~ 
bonded atomic models with internal bending moments. 

One might also consider extending the method to three-dimensional systems. In 
three-dimensions, the stress is the force per unit area and is related to the force 
necessary to hold together a cut surface in the medium. The forces do not form a 
vector field and their relation to the stress tensor components cannot be simply 
expressed. Also, three scalar functions’ are necessary to determine all the ~om~~~~~ts 
of the stress tensor. For these reasons, it is not clear how to extend the methods to 
three-dimensional systems. 

III. EXAMPLE: A SIMPLE MECHANICS PROBLEM 

Frank’s intent in investigating the properties of the Airy stress function was to 
solve simple first-year physics mechanics problems. To illustrate the principles 
introduced in the previous section, a typical stress problem in elementary mechanics 
will be analyzed. 

Problem. A car of weight W sits on the end of a cantilevered bridge as shown in 
Fig. 1. Determine the stresses in the supports of the bridge. 

I The discovery that three scalar functions were necessary in three-dimensions was first made by 
James Clerk Maxwell. 
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FIG. 1. A simple mechanics problem analyzed in Section III. (a) A car sits at the end of a 
cantilevered bridge. The car has weight W (indicated by the dotted line). (b) The contours of the Airy 
stress function may be easily drawn using the rules developed in Section II. 

Solution. Due to gravity there is a line of force of magnitude W beginning at the 
car and stretching to the ground below; it has been indicated by the dashed line in 
Fig. la. In region A in the figure, the Airy stress function may be set equal to zero 
(actually, it can be fixed to be zero and have zero gradient at one point in region A; 
but since all of region A can be connected to that point by a curve that does not cross 
a line of force, the Airy stress function is zero everywhere in region A). The line of 
force due to the weight of the car can be treated just as if it were due to another strut. 
Therefore, one may associate a stress, CJ~,,, along a line running from region A and B 
parallel on the x-axis; one finds 

(III. 1) 

The gradient of I,Y(X, u) is zero in region A and must change by an amount W as the 
line of force is crossed. Since the integral may be computed anywhere along the y- 
direction, the change in the gradient must be the same along the line of force. 
Therefore, the contour lines of I,V(X, y) should be parallel to the line of force in region 
B, as shown in Fig. lb. Because there are only pin-joints in the problem, all beams 
have only longitudinal compression or tension and the contour lines of the stress 
function must join cointinuously across them. Given the constraints in region A and 
the rules for changing the gradient, it is not difficult to fill in the contour lines of the 
stress function, as shown in Fig. lb. To find the stresses in any member, it is 
sufficient to find the change in the gradient of ~(x, y) along a line running perpen- 
dicular to the member. For example, as one follows a line running from region 
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A-B-F-A (see dotted line in Fig. la) the change in the gradient along A-B must be 
equal to that along F-A; as a result, the change in the gradient along B-F is twice as 
great but of opposite sign to the other two. If the tension in A-B is W, the tension in 
F-A must also be W and the tension in B-F must be -2W. These are clearly t 
correct results if the structure is in static equilibrium and all.forces and torques are 
balanced. One may proceed to analyze the stresses in the other members in a like 
fashion. The method is simple to apply even for rather complicated first-year physics 
problems. 

IV. APPLYING THE METHODS TO ATOMK MODELS 

The methods suggested by Frank cannot be straightforwardly applied to atomic 
models for two reasons. Firstly, the atomic models are three-dimensional whereas the 
method of computing the Airy stress function only applies to two-dimensions. 
Therefore, the methods can only be applied to cases where the components of the 
stress tensor are independent of some coordinate a. Then, since the laws of static 
equilibrium by which the Airy stress function is determined are vector relations, one 
can project atomic coordinates and forces onto the x-y plane and solve the effectively 
planar problem. 

The second problem associated with applying the methods to atomic models is 
that, once the atoms and forces are projected onto the two-dimensional plane, the 
lines of force form a very tangled web and the regions of empty space are complex 
and numerous. It is therefore not practical to draw contours throughout the plane as 
was done for the simple mechanics problems. 

The Airy stress function function may be computed for even fairly large atomic 
models (1000 atoms) provided that a sufficiently clever algorithm is used. We shall 
describe the algorithm we found to be most efficient. 

Firstly, the Airy stress function is only evaluated at the intersections of a fine grid 
of lines that divide up the projected plane of atoms, If the grid is fine enough, there is 
sufficient information from knowing the Airy stress function on the discrete grid of 
points to analyze the stress properties of the model. If the grid lies along the x- and y- 
directions, one imagines integrating along the grid line beginning outside the model 
where the stress function is zero. As one integrates into the model, each time a line of 
force is crossed the gradient of the stress function is changed appropriately. The 
process is repeated until the integration passes once again out of the boundaries of 
the projected atomic model. This scheme is in fact, impractical since at each point 
along the integration line, each pair of interacting atoms in the model must be 
checked to see if the line of force joining them crosses the grid line and, if so, at what 
point and at what angle. 

Instead, since the grid is fixed initially, one can consider each pair of interactive 
atoms just once and determine which grid lines are crossed by the line of force 
between them. Because of the linearity in the equations determining the stress 
function, each line of force affects the stress function independently of the others. Xf 
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FIG. 2. Airy stress function computed for a cubic crystal of 64 atoms relaxed under a 
Lennard-Jones potential with cutoff equal to 1.2 times the nearest neighbor distance. Atomic positions 
have been superimposed. 

the stress function is fixed to be zero on one end of the grid line and a line of force 
crosses the line at a point x’, then at each point x on the other side of the intersection 
point the stress function is changed by an amount F(x -x’), where F is the 
component of the force perpendicular to the grid line. By repeating the computation 
for each grid line crossed by the line of force and for each pair of interacting atoms, 
one may compute the Airy stress function for a model of 1000 atoms in fractions of a 
minute on an IBM 370 computer. 

As a test example of the method, we computed the Airy stress function for a cubic 
crystal of 64 atoms. The model was relaxed under a Lennard-Jones potential. For the 
case shown in Fig. 2 (the atomic positions have also been indicated), the potential 
was cut off sharply, at a distance of 1.2 times the nearest neighbor distance. As a 
result, the Airy stress function that was found was completely trivial since each atom 
was able to find a position that was exactly one nearest neighbor distance from each 
of its neighbors. If the cutoff distance were larger, an atom would interact with its 

FIG. 3. Airy stress function computed for a cubic crystal of 64 atoms relaxed under an infinite 
range Lennard-Jones potential. Atomic positions have been superimposed. 
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second nearest neighbors as well as its nearest neighbors, and internal stresses in the 
solid would develop. In the example shown in Fig. 3, the potential was made to be 
infinite range, and a non-trivial Airy stress function was found. Because 
interatomic force is a central force that decreases in strength with increasing dista 
the stress function on each plaquette of the lattice is stretched in the diagonal 
direction. The second derivatives of the function contoured in the figure gives 
precisely the stresses one would expect from a finite crystal with in~nite range 
interaction. 

In Fig. 3, all the contours of the stress function are closed, as one would expect 
since the Airy stress function is set to zero everywhere outside the boundary of the 
model. However, in the algorithm as described above, the Airy stress function is set 
to zero only along one end of each grid line, i.e., along two of the four sides of t 
model. A powerful consistency check on the relaxation procedure is that the Airy 
stress function on the other boundaries is computed to have zero gradient and 
magnitude. If the gradient is different from zero outside the boundary, the forces (and 
possibly the torques) have not been balanced in the model. If the gradient is zero but 
the magnitude of the stress function is not, the forces are balanced but the torques are 

FIG. 4. Airy stress function computed for a 1000 atom fee crystal relaxed under Lermard-Jones 
potential cutoff at 2.1 times the nearest neighbor distance. Three atoms have been fixed in the relaxation. 
As a result, the forces are not truly equilibrated and the contour lines of the stress functions do not 
close. The region of greatest peaks is where the three fixed atoms tie in the model. 
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not. As an example of how sensitive the consistency condition is, consider Fig, 4. 
Figure 4 represents the Airy stress function found for a 100 atom fee crystal after 
many relaxations of the model under a cutoff Lennard-Jones potential. The relax- 
ation procedure normally holds three atoms fixed in the model during the relaxation 
to eliminate net rotations and translations of the model. As a result, the forces 
between the fixed atoms and their neighbors are never quite equilibrated. Even though 
the three atoms (which are usually chosen to lie near one another in the model) 
represent a small percentage of the total number of atoms in the model, they have a 
tremendous impact on the computation of the Airy stress function. As one can 
observe in Fig. 4, the Airy stress function is highly perturbed around a small region 
near the boundary where the three atoms lie. In fact, the contour lines of the stress 
function stretch beyond the boundary of the problem and do not close. The only 
remedy to this that we found was to relax the model many times fixing different sets 
of three atoms until the contour lines of the stress function did close. (See Figs. 5 and 
6.) However, the example demonstrates how the computation of the stress function 
can be used to verify the success of a relaxation procedure. 

The method of computing the Airy stress function has been usefully applied in an 
attempt to analyze dislocations in amorphous solids. A dislocation is a line defect 
which, in a crystal, can be detected by comparing the Burger’s circuit (the line 
integral of the displacement) in the dislocated crystal to that in an undislocated 
crystal. The dislocation leads to non-trivial stresses which, if the line defect lies along 
the z-axis, are independent of z. The Airy stress function may therefore be defined, 
and, for an edge dislocation in a continuous medium, the Airy stress function may be 
determined exactly [ 11, 

~(4 Y> K yln(x* + ~‘1. (IV. 1) 

However, in an amorphous solid, one cannot possibly see if the solid contains a 
defect since there is no reference lattice with wwhich one can compare Burger’s 

FIG. 5. Airy stress function computed for 1 1000 atom fee crystal with an edge dislocation relaxed 
under Lennard-Jones forces with a cutoff of 2.1 times the nearest neighbor distance. The dislocation has 
not been perfectly centered and finite boundary effects can be observed. 
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FIG. 6. Airy stress function computed for a 4000 atom amorphous solid with a dislocation rela‘xed 
lwder a Lennard-Jones potential cutoff at 1.2 times the nearest neighbor distance. 

circuits. On the other hand, if and amorphous solid can be shown to have an Airy 
stress function characteristic of a dislocated crystalline solid, one may conclude the 
amorphous solid also contains a dislocation. 

Therefore, a dislocation was first placed in a perfect fee crystal by cutting away a 
half plane of atoms and relaxing the remaining atom under Lennard-Jones potential, 
The Airy stress function was computed for a model relaxed under a Lennard-Jones 
potential cut off at 2.1 times the nearest neighbor distance and the result shown in 
Fig. 5 was found. The results are consistent with Eq. (VI.1) once it is realized that the 
model is of finite extent and the dislocation has not been placed precisely in the 
center of the model. 

When the same procedure was followed for an amorphous solid composed of over 
4000 atoms, the results shown in Fig. 6 were found. We found that the Airy stress 
function of the dislocated amorphous solid is very similar to a dislocated and relaxed 
crystalline model, although with a smaller maximum value for the stress function in 
the amorphous solid compared to the crystalline. From this one may conclude t 
dislocations, or at least localized entities with characteristics very similar to 
dislocations, can be stabilized in amorphous solids under static relaxation. 

V. CONCLUSIONS 

Because the Airy stress function is a single function that contains all the infor- 
mation about the stresses within an effectively planar solid, computing the Airy stress 
function is the most convenient way of determining the stress properties of the solid. 
Because the stress function in continuous media is usually difficult to determine, the 
stress function has seldom been considered as a practical tool. 

Building on the suggestions of Frank, we have shown that even for rather large 
atomic models with central forces the Airy stress function can be computed in a very 
efficient scheme. We have demonstrated that it may serve to sensitively test whether a 
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solid has been equilibrated under the interatomic forces and may aid in determining 
structural properties of the solid. Thus, it would be recommended to those 
investigating stress properties in problems ranging from simple mechanics to solid 
state physics that they refamiliarize themselves with the very useful Airy stress 
function and its interpretations. 
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